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Abstract: Graphics processing unit (GPU) is a low-cost, low-power (watts per flop) and very

high performance alternative to conventional microprocessors. In addition to their applications in

graphics processing, researches are more and more attracted by their potential application in

numerical computing due to their powerful ability of parallel computing and rapidly improved

programmability. This paper makes a first try of applying GPU to accelerate computation for

boundary face method (BFM). The element integration possessing high level of parallelism is a

computationally intensive part of the BFM. As a primary step, we have implemented the

parallelization of the regular integration and singular integration in CUDA (Compute Unified

Device Architecture) programming environment. Comparative computations are made on both

NVIDIA GTX 680 GPU and Intel(R) Core(TM) i7-3700K CPU. Results show that, at the same

level of accuracy, the speedup of regular integration and singular integration is up to 18.2 and 34.4

respectively.
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1. INTRODUCTION

In the traditional boundary element method (BEM) (Brebbia et al., 1978; Chen et al., 2001; Wang

et al., 2011), boundary elements are employed not only to perform boundary integration and

physical variable approximation, but also to approximate the corresponding geometric model.

Coarse mesh will cause large geometric errors, and lead to poor computation accuracy. The

boundary face method (BFM), which is first proposed by Zhang (Zhang et al., 2008, Zhang, 2012),

is a generalization of the conventional BEM and boundary node method (Zhang et al., 2001). In

BFM, both variable interpolation and boundary integration are performed in the parametric spaces

of the body surfaces. As to the boundary integration, the geometric data of integration point such
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as physical coordinates, Jacobians, normal vectors are obtained from the surfaces directly.

Therefore, geometric errors are avoided (Qin et al., 2010).

Several works have been published to improve or extend the applicability of the BFM (Wang et

al., 2013; Zhou et al., 2013). Due to the increasing scale of problems, a trade-off between the

accuracy and efficiency becomes the bottleneck for the application of BFM, and the time for

element integration occupies a relatively large proportion to the total analysis time in BFM. To

improve the efficiency of the BFM, a parallel integration scheme which is based on GPU is

applied in this paper to accelerate the element integration in the BFM. At the primary stage, we

have implemented the parallelization of regular integration and singular integration in element

integration.

In recent years, GPU comes to be used for general computation rather than only for graphic

processing (Nawata et al., 2011). The number of floating-point operations per second and memory

bandwidth of GPU are much larger than that of CPU in the same period. Moreover, the price of

GPU is relatively lower. Because the GPU is designed for compute-intensive, highly parallel

computation, more transistors are devoted to data processing rather than data caching and flow

control compared to CPU. As illustrated in figure1, the Arithmetic Logical Units (ALUs) in GPU,

which are used for data processing, are more than that in CPU while the storage space of Dynamic

RandomAccess Memory (DRAM) in CPU and GPU are usually same.

(a) CPU (b) GPU
Figure1: The comparison between GPU and CPU hardware structures.

More specifically, the GPUs are especially well-suited to address problems that can be expressed

as data-parallel computations – the same program is executed on many data elements in parallel –

with high arithmetic intensity – the ratio of arithmetic operations to memory operations (Nvidia

Corporation, 2011). In November 2006, NVIDIA introduced CUDA (Nvidia Corporation, 2011;

Nvidia Corporation, 2011), a general purpose parallel computing architecture, it allows

programmers to develop high performance GPU computing program much more conveniently

than before by using the C programming language. Nowadays, CUDA has been widely used in oil

exploration (Aksnes et al., 2009), astronomy (Harris et al., 2008), elastodynamic simulation (Wei

et al., 2012), computational fluid dynamics (Kakuda et al., 2012; Corrigan et al., 2011; Crane et al.,
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2007), biology (Okitsu et al., 2010) and other areas (Mesquita et al., 2009). 10x speedup, even

100x speedup have been achieved in many applications. Cai (Cai et al., 2012) developed parallel

explicit finite element sheet forming simulation system based on GPU architecture obtained 27x

speedup. Januszewski (Januszewski et al., 2010) accelerated numerical solution of stochastic

differential equations with CUDA achieved 675x speedup. Pichel (Pichel et al., 2012) optimized

the sparse matrix-vector multiplication, and made the speedup up to 2.6x with the help of CUDA.

In the implementation procedure of BFM, we find that the proportion of time used for integrating

the surface cells can be more than 90%. For example, in the first numerical example in section 5,

the entire calculation process takes 20.297s when we discretize the model with 15804 nodes, while

the time used for integrations is 19.016s. Therefore, in this paper, CUDA is used to accelerate the

regular integration and singular integration in BFM. We find that both of them in BFM are very

well suited to acceleration on modern GPU. The acceleration and highly accurate achieved on the

GPU through two numerical examples.

The remainder of this paper is organized as follows: Section 2 overviews the CUDA. In section 3,

we present the boundary integral equations, discretizations, regular integration and singular

integration. Section 4 describes the schemes to accelerate regular integration and singular

integration in detail. Two numerical examples for evaluating the performance of the developed

parallel codes are presented in section 5. The paper ends with conclusions and future work in

Section 6.

2. INTRODUCTION OF CUDA

CUDA is NVIDIA's general purpose computation on graphics processing units (GPGPU) model

based on C programming language, which can be mastered directly by most people who learned C.

The codes written by CUDA are performed in graphics chip without learning specific instructions

of the graphics chip or a special structure. GPU consists of several stream multiprocessors (SM).

And eight stream processors (SP) are built in a SM. Stream processors are not programmed

directly; rather, one writes a CUDA kernel for the GPU. Each kernel consists of a collection of

threads arranged into blocks and grids (Aksnes et al., 2009). CUDA provides a large-scale

multi-thread architecture making GPU as the coordination processor of CPU. Because GPUs

architecture provides hundreds of cores compared with only 1-4 cores in CPUs architecture, thus it

is better suited for Single Instruction Multiple Data (SIMD) computations (Liu et al., 2006). The

general parallel computing process of CUDA consists of four steps as shown in figure 2: (1)

Initialize data on host, (2) Copy data from host to device, (3) Parallel computing, (4) Copy data

back to host from device.
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Figure 2: General parallel computing process of CUDA.

GPU threads as illustrated by figure 3 are organized in a grid, and each grid consists of a number

of blocks. In G80/GT200 series GPU, a block supports 512/1024 threads. In Fermi architecture

(Nvidia Corporation, 2009), the number is up to 1536. Threads in the same block not only execute

in parallel, but also communicate with each other through shared memory and barrier. The shared

memory and barrier provide fine-grained data parallelism and thread parallelism, nested within

coarse-grained data parallelism and task parallelism (Nvidia Corporation, 2011). In the actual

operation, a block will be divided into smaller units something we called warp (Nvidia

Corporation, 2011; Nvidia Corporation, 2011), which is a finer level in the thread’s hierarchy. 32

threads form a warp, then the warps are processed by stream processors one by another. The guide

of CUDA recommends that the number of threads per block should be chosen as a multiple of the

warp size, or better, a multiple of 64 from the viewpoint of performance (Takahashi et al., 2009).
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Figure 3: Grid of thread blocks.

3. BOUNDARY INTEGRAL EQUATIONS, DISCRETIZATIONS, REGULAR

INTEGRATIONAND SINGULAR INTEGRATION

3.1 Boundary integral equations

Firstly the boundary integral equations is given

0 ( ( ) ( )) ( , ) ( ) ( , )s su u q d q u d
 

     s y s y s s y , (1)

where  represents the boundary of domain, u and q are prescribed as potential and the

normal flux respectively, and /q u n   ; y and s stand for the source point and the field

point on the boundary respectively. ( , )sq s y and ( , )su s y are fundamental solutions. For 3-D

potential problems,
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3.2 Discretizations

At first the boundary of domain should be discretized into M boundary cells and N

corresponding interpolation nodes. As to any node, either u or q is known. u and q on the

boundary can be approximated by the following formulas:
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where, u and v are 2-D parameter coordinates of boundary parameter surface, 3-D physical

space coordinates ( , , )x y z can be represented by polynomials: ( , )x x u v , ( , )y y u v , ( , )z z u v ,

kN is the shape function. Substituting Eqn. (4) into Eqn. (1), we have
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Eqn. (5) can be formed in a matrix form as
u qH G , (6)

where
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3.3 Regular integration and singular integration

The first term on the right hand side of Eqn. (5) is regular in any case. Therefore, the regular

Gaussian integration scheme can be used to evaluate it over each cell. As to the second term on the

right hand side of Eqn. (5), if the distance between s and y is far enough, we consider that is

regular. Take a quadrilateral cell shown in figure 4 as an example. L is the longest line in the

quadrilateral cell, d is the distance between point y and s . If d Lk ( k is a scale factor, its

value is 4.0 in this paper), the cell can be treated as regular cell.

Figure 4: Quadrilateral cell.

Considering the fundamental solutions of integral equation in potential problems, when y

(source point) and s (field point) belong to the same cell, as shown in figure 5, the cell is treated

as singular cell, and ( , ) 0r s y , ( , )su s y , so the second term on the right hand side of Eqn.

(5) will become weakly singular.

(a) On the vertex (b) On the edge (c) In the cell
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Figure 5: The position of source point in quadrilateral cell.

4. ACCELERATION METHODWITH CUDA

4.1 Regular integration

We use the CUDA to compute matrix H, G and the geometric data at Gaussian integration points

such as Jacobians, normals, shape functions for regular integration. In CPU-based code, H and G

are computed serially. Figure 6 shows the algorithm: in the first loop, there are N cells, each cell

contains a number of field points(three field points in liner triangle cell). Geometric data are

computed in this loop. In the second loop, H and G are computed. One item of H and G can be

obtained in one cycle. When the second loop terminates, then, repeat the same procedure for other

cells in the first loop.

Figure 6: Flowchart of CPU computing.

We develop GPU-based code with CUDA as figure 7 shown. Initially we transfer data of

integration patches and cell data such as 3D physical coordinate and 2D parameter coordinate of

field points to GPU memory. N stands for the cell number. Then we apply the tid_in_grid to

locate the thread position in the whole grid. Each thread executing the kernel is given a unique

thread ID that is accessible within the kernel through the built-in threadIdx variable (Nawata et al.,

2011). The blockIdx.x and threadIdx.x come from CUDA runtime, blocksize is defined as the

length of block in x-direction. In this paper, we chose one-dimensional grid and one-dimensional

block. 1Q stands for the cell number. The first kernel is assigned to compute the geometric data
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at Gaussian integration points. N threads execute in parallel in the first kernel, one thread

computes the geometric data for one cell. Then we allocate the G_Host and H_Host in main

memory, their dimensions are N N . 2Q stands for the number of regular integration points for

each cell. G_Device and H_Device which located in GPU memory are used for storing the results

of the second kernel which computes G and H. The second kernel is called by CPU for N times.

One row of items in G and H can be obtained in one second kernel call by using the geometric

data computed by the first kernel. When a kernel computing procedure is finished, the results

stored in G_Device and H_Device are transferred back to CPU.

Figure 7: Algorithm of regular integration with GPU-based code.

4.2 Singular integration

For singular integration, the singular cell would be subdivided into M ( 1M  ) cells to increase

the gauss integration points and insure the computing accuracy. Figure 8 shows the subdivision of

a triangular cell, and the cell is subdivided into five cells. The subdivision of a singular cell is

dependent on the location of the source point. Detailed rules of the subdivision can refer to paper of

Qin et al. (2010).
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Figure 8: The triangular cell subdivision.

Figure 9 shows the algorithm of singular integration in GPU. As the same to regular integration,

we also transfer data of patches and cell data to GPU memory in the first step. Q and N stand

for the cell number. Cell subdivision is executed parallel in GPU. We assign Q threads in the

grid, and one cell is subdivided into M cells in one thread. The loop in line 09~12 is used to

compute the geometric data at Gaussian integration points. Results obtained in line 11 will be

added to G_Device and H_Device in each step of loop. Finally G_Device and H_Device are

transferred to G_Host and H_Host which have been allocated in main memory.

Figure 9: Algorithm of singular integration in GPU.

5. NUMERICALRESULTS
The GPU-based code of BFM developed by CUDA has been tested for two types of 3-D
geometrical objects: a cuboid and a foundation bed. The first object is used to compare the
GPU-based code with the CPU-based code on accuracy and efficiency performance. We adopt the
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foundation bed as an example to demonstrate that our code can be used for objects with different
shapes. In this paper, field variables are approximated by linear triangular elements. In order to
assess the accuracy of the method, we have used the following cubic analytical field:

3 3 3 2 2 23 3 3u x y z yx xz zy      . (9)

The GPU-based code is tested on the Computing platform listed in table 1.

Table 1: Computing platform.
OS Windows 7 64bit with 16GB main memory
CPU Intel(R) Core(TM) i7-3700K CPU 3.5GHZ

GPU
NVIDIA GTX 680 GPU with NVIDIA driver version 301.32, it consists of 192
streaming multiprocessors (SM), 2GB global memory. The compute capability is
3.0

Complier Visual studio 2008, CUDA toolkit 4.2.9 64bit

The performance of GPU implementation is compared against the serial-oriented code of the

CPU implementation. Speedup is obtained by dividing the time of CPU-based codes computing by

the time of GPU-based codes computing.

5.1 Dirichlet problem on a cuboid

The size of cuboid we used is 4 10 30  mm, meshed by liner triangular elements. Figure 10

shows the cuboid discretization for the BFM analysis with 476 elements and 1428 nodes.

Figure 10: The BFM mesh for cuboid.

5.1.1Regular integration

Table 2 shows the computing time and errors of results of both CPU-based code and GPU-based

code, and the last column lists the speedup of regular integration. CPU_Time and GPU_Time

represent the computing time cost of the CPU-based code and the GPU-based code, respectively.

Compute_GPU reprsents the time of CUDA kernel computing, Translate_GPU stands for the time

for copying data between the main memory and the GPU global memory, Compute_GPU plus

Translate_GPU equals GPU_Time. It is obvious that Translate_GPU occupies a large proportion

of GPU_Time, this is because the number of double data which is transferred to GPU shown in

figure 7 is up to 2 N N  . Therefore, the bandwidth limitations of GPU we used slow the growth

of speedup when the node number is large enough.

Table 2: Result of regular integration for cuboid.
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Node
CPU_

Time (s)

Compute_

GPU (s)

Translate_

GPU (s)

GPU_

Time(s)

CPU_

Errors (%)

GPU_

Errors (%)
Speedup

1428 0.145 0.000 0.049 0.049 0.09357 0.09357 2.960

2412 0.356 0.000 0.0505 0.0505 0.0776 0.0776 7.049

3384 0.713 0.000 0.0575 0.0575 0.06322 0.06322 12.400

6636 3.121 0.078 0.1175 0.1955 0.04639 0.04639 15.964

9012 5.878 0.185 0.1635 0.3485 0.04086 0.04086 16.867

13152 14.663 0.250 0.5715 0.8215 0.03691 0.03691 17.849

15804 20.297 0.310 0.805 1.115 0.03571 0.03571 18.201

Figure 11 exhibits the speedup of GPU-based code. As figure 11 shown, at first the speedup

grows rapidly with the node number increases, and then it grows slowly when the node number is

large enough. When the node number reaches 15804, the speedup can be up to 18.2. It is easy to

conclude that GPU-based code behaves much better than CPU-based code considering the

computing efficiency. Figure 12 compares errors of the results of GPU-based code with that of

CPU-based code. It is shown that the accuracy of the GPU computation is good enough for regular

integration in BFM.

Figure 11: Speedup of regular integration for cuboid.
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Figure 12: Errors of regular integration for cuboid.

5.1.2 Singular integration

Table 3 shows the computing time and errors of results of both CPU-based code and GPU-based

code, and the last column lists the speedup of singular integration. From the table bellow, we can

see that the Compute_GPU always stays at 0s even when the node number reaches 15804, and the

GPU_Time is fully occupied by Translate_GPU. The reason is that the timing precision in C++ is

millisecond, and the computational complexity in GPU is too low, the time of Compute_GPU

lower than 0.001s will be set to 0.000s.

Table 3: Result of singular integration for cuboid.

Node
CPU_

Time(s)

Compute_

GPU(s)

Translate_

GPU(s)

GPU_

Time(s)

CPU_

Errors(%)

GPU_

Errors(%)
Speedup

1428 0.053 0.000 0.008 0.008 0.09357 0.09357 6.625

2412 0.110 0.000 0.010 0.010 0.0776 0.0776 11.000

3384 0.183 0.000 0.013 0.013 0.06322 0.06322 14.077

6636 0.321 0.000 0.016 0.016 0.04639 0.04639 20.061

9012 0.425 0.000 0.017 0.017 0.04086 0.04086 25.000

13152 0.621 0.000 0.021 0.021 0.03691 0.03691 29.571

15804 0.861 0.000 0.025 0.025 0.03571 0.03571 34.440

Figure 13 exhibits the speedup of singular integration for cuboid. According to the picture, we

can see that the speedup increases almost linearly with the growth of the node number. The

number of double data which is transferred to GPU shown in figure 7 is 2 N P P   ( P stands

for number of field points in one cell, and N stands for cell number), it is far smaller than the

number in regular integration. Therefore, the speedup of singular integration is much higher than
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that of regular integration without the bandwidth limitations. When the node number reaches

15804, the speedup can be up to 34.4. The accuracy of GPU computing of the singular integration

is equal to that of the regular integration as shown in figure 12.

Figure 13: Speedup of singular integration for cuboid.

5.2 Dirichlet problem on a foundation bed

Computation on a foundation bed is presented as the second example. In figure 14, the body is

meshed with 846 linear triangular elements and 2538 nodes. In the following part, we will remesh

the model in order to observe the relationship between speedup and the number of nodes.

Figure 14: The BFM mesh for foundation bed.
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Because the time cost of GPU computing of foundation bed is same to that of cuboid, the table

like table 2 is not given again. As figure 15 and figure 16 shown, when the node number reaches

15882, the speedup of regular integration and singular integration is up to 17.9 and 34.1

respectively. Figure 17 shows the errors of results for the foundation bed. It is seen that the

numerical results obtained by both codes are in good agreement with the analytical solution.

Figure 15: Speedup of regular integration for foundation bed.
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Figure 16: Speedup of singular integration for foundation bed.

Figure 17: Errors of numerical results for foundation bed.

6. CONCLUSIONS

In this paper, we have developed the GPU-based code for regular integration and singular

integration in boundary face method (BFM), and demonstrated the suitability of a parallel

CUDA-based hardware platform for BFM. The speedup of regular integration and singular

integration is up to 18.2 and 34.4 respectively, when the node number reaches 15882. As to regular

integration, because of the large scale of input data, the time cost of data transmission between

host and device will affect the efficiency of the code seriously. Therefore the bottleneck of

improving the efficiency of the program is bandwidth, which is related to the hardware

performance of GPU. The computational accuracy of the GPU-based code is comparable with that

of the CPU-based code for double-precision floating-point computation. As future work we plan to

use CUDA to accelerate the near singular integration and LU-decomposition of large-scale linear

equations in BFM. With the lower cost of high performance GPU, there is no doubt that the

development of stream processing technology for general-purpose computing has just started and

its potential is surely not yet fully revealed.
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